Introduction

to

Plane Waves and \vec{k} -points

Umesh V. Waghmare

Theoretical Sciences Unit J N C A S R Bangalore

ICMR

OUTLINE

- Periodic Systems
- Kohn-Sham wavefunctions of periodic systems
- Representations of wavefunctions: Plane Waves
- Consequences of symmetries
- Brillouin Zone Integrations
- Metallic Systems

Periodic Systems

• Structure of periodic systems

 Bravais Lattice: Periodicity periodic unit: unit cell vectors

 \vec{a}_1 , \vec{a}_2 , \vec{a}_3

Cell volume: Ω_{cell}

Lattice points: $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$

- Basis: Structure within a unit

- positions and types of atoms: $\vec{ au_i}$, Z_i

• Examples:

Unit Cell and Choices

 N_a : Number of atoms per unit cell (basis) For unit cells 1 and 2, $N_a = 2$. For unit cell 3, $N_a = 4$.

Primitive unit cell: N_a is the smallest All choices should give equivalent description

Reciprocal Space

- Fourier Transfrom: $f(\vec{r}) \rightarrow f(\vec{q})$
- Periodic Boundary Conditions:

$$f(\vec{r}) = f(\vec{r} + N_i \vec{a}_i)$$

Born – von Karman conditions:

$$\exp(i\vec{q}\cdot Ni\vec{a}i)=1$$

$$q \vec{\cdot} \vec{\cdot} ai = 2\pi \underline{integer} N$$

$$f(\vec{q}) = \frac{1}{\Omega_{crys}} \int_{\Omega_{crys}}^{\vec{r}} d\vec{r} f(\vec{r}) exp(i\vec{q} \cdot \vec{r}),$$

$$\Omega_{crys} = \Omega_{cell}^{"} \Pi_i N_i$$

• For a function with lattice periodicity:

$$f(\vec{r}) = f(\vec{r} + \vec{R}),$$

$$\vec{q} = m_1 \vec{b_1} + m_2 \vec{b_2} + m_3 \vec{b_3}$$
 and $\vec{b_i} \cdot \vec{a_j} = 2\pi \delta_{ij}$

$$\Rightarrow \vec{q} = \vec{G}$$

 $ec{b}_i$: primitive vectors of *reciprocal space*

lattice

eg.
$$\vec{b}_1 = 2\pi \vec{a}_2 \times \vec{a}_3/\Omega_{cell}$$

 \vec{G} : reciprocal space lattice (RSL) vector

- Brillouin Zone (BZ): Wigner Seitz cell in RS, volume, $\Omega_{BZ}=(2\pi)^3/\Omega_{cell}$
- For a general function:

$$\vec{q}=\vec{k}+\vec{G},$$

$$\vec{k}=\frac{n_1}{N_1}\vec{b}_1+\frac{n_2}{N_2}\vec{b}_2+\frac{n_3}{N_3}\vec{b}_3$$

$$\vec{k}\in \text{ primitive cell of the RSL or BZ}.$$

• FFT meshes:

Long length-scales: $L_i = N_i |\vec{a}_i|, \propto 1/\Delta k$

Short length-scales: $\Delta r \propto 1/G_{max}$

Periodic systems: Electron wavefunctions

- \bullet Translational symmetry: $\hat{T}_{\vec{R}}H = H\hat{T}_{\vec{R}}$
- Bloch theorem:

$$\begin{split} \widehat{R}\psi(\vec{r}) &= \psi(\vec{r} + \vec{R}) = \exp(i\vec{k}\cdot\vec{R})\psi(\vec{r}) \\ \vec{k} \text{ is a quantum number to label } \psi; \\ \psi_k(\vec{r}) &= \exp(i\vec{k}\cdot\vec{r})u_{\vec{k}}(\vec{r}) \\ u_{\vec{k}}(\vec{r} + \vec{R}) &= u_{\vec{k}}(\vec{r}) \text{ is lattice periodic.} \end{split}$$

- ullet For each \vec{k} , discrete energy eigenvalues: $\epsilon_{i\vec{k}}$ form energy bands $\epsilon_{i\vec{k}}$: non-analytic only at BZ-boundary
- Integrals in k-space (in DFT):

$$\rho(\vec{r}) = \sum_{i} \int_{BZ} d\vec{k} |\psi_{i\vec{k}}(\vec{r})|^2$$

Representation of $\psi_{i\vec{k}}$: Plane Waves

$$\psi_{i\vec{k}}(\vec{r}) = \frac{1}{\sqrt{\Omega_{cell}}} \exp(i\vec{k} \cdot \vec{r}) \sum_{\vec{G}} C_{i\vec{k}}^{\vec{G}} \exp(i\vec{G} \cdot \vec{r})$$

Plane Waves:
$$<\vec{r}|G>=\frac{1}{\sqrt{\Omega_{cell}}}\exp(i\vec{G}\cdot\vec{r})$$

•
$$C_{i\vec{k}}^{\vec{G}} = \int_{\Omega_{cell}} \langle G|\vec{r} \rangle u_{i\vec{k}}(\vec{r})d\vec{r}$$

- Orthonormality: $<\vec{G}|\vec{G}'>=\delta_{\vec{G},\vec{G}'}$
- No dependence on the basis of a crystal
 → Computation of forces easy!
- A single parameter: E_{cut} $\vec{G} \in$ basis set, if $\frac{1}{2} |\vec{G}|^2 < E_{cut}$
- Uniform resolution in direct space: $\Delta r \propto \frac{2\pi}{G_{cut}}$

Plane Waves (contd)

Plane wave cutoff for density:

$$2G_{cut} \rightarrow 4E_{cut}$$

- Basis set depends on the lattice constant:
 Pulay corrections
- FFT essential for efficiency $(\hat{T} + V_{KS})\psi$: eg. $V(\vec{r})\psi(\vec{r})$: convolution in G-space!

Symmetry

- Time reversal symmetry: non-magnetic systems $\psi_{i-\vec{k}} = \psi_{i\vec{k}}^{\star}$
- Inversion symmetry: $\vec{r} \rightarrow -\vec{r}$ leads to real $C_{i\vec{k}}^{\vec{G}}$.
- Point symmetries \hat{S} : $\hat{S}H = H\hat{S}$ rotations, reflections, inversions and combinations.

$$\psi_{i,\widehat{S}^{-1}\vec{k}}(\vec{r}) = \psi_{i,\vec{k}}(\widehat{S}\vec{r})$$

also an eigenfunction with energy $\epsilon_{i\vec{k}}$.

 Space Groups (230): combination of point and translational symmetries

Irreducible representations (Irrep):

- \star point group of \vec{k} : $S \in G_k$ if $S\vec{k} = \vec{k}$
- \star Star of \vec{k} : $\vec{k}_i = S.\vec{k}$; N_s vectors.

 $D(Irrep \ of \ the \ space \ group): \ D = D_{irrepofG_k} \times N_s$

Symmetries (contd)

- Irreducible BZ (IBZ): The smallest region in the BZ such that there are no two \vec{k} 's that belong to the same star.
- Knowledge of wavefunctions in IBZ \Rightarrow wavefunctions elsewhere in the BZ.
- Band structure plots often are shown along the high symmetry lines.
- ullet Irrep labels at various \vec{k} 's determine the symmetry of localized Wannier functions.

BZ Integration: Special k-points

Accurate integration:

$$\int_{BZ} d\vec{k} f(\vec{k}) = \frac{\Omega_{BZ}}{N_k} \sum_{i}^{N_k} f(\vec{k}_i)$$

- ullet Symmetries: \int_{BZ} replaced by \int_{IBZ}
 - A scalar property: eg. $\epsilon_{i\vec{k}}$ $\sum_{\vec{k}_i \in BZ} f(\vec{k}_i) = \sum_{\vec{k}_i \in IBZ} w_k f(\vec{k}_i)$ w_k : weight of a k-point.
 - Scalar field: eg. density $\rho_I(\vec{r}) = \sum_{\vec{k}_i \in IBZ} w_k \rho(\vec{k}_i, \vec{r})$ $\rho(\vec{r}) = \frac{1}{N_S} \sum_S \rho_I(\hat{S}\vec{r})$

Special k-points

• $f(\vec{k}) = \sum_{\vec{R}} f(\vec{R}) \exp(i\vec{k} \cdot \vec{R})$ $f(\vec{R})$ decays off exponentially (insulators).

- Baldereschi point:
 - there is a mean value point (MVP) where the integrand equals the integral
 - symmetries \Rightarrow approx. location of MVP eg. SC: $\vec{k} = (\pi/2a)(1,1,1)$ BCC: $\vec{k} = (2\pi/a)(1,1,3)/6$.
- Chadi and Cohen schemes:
 Generalization of the MVP idea to get larger sets
- Monkhorst-Pack k-points:

$$\vec{k}(n_1, n_2, n_3) = \sum_{i=1}^{3} \frac{2n_i - N_i - 1}{2N_i} \vec{b}_i$$

- Uniform mesh; exact integration for Fourier components \vec{R} up to $N_i a_i$.
- Scaled reciprocal lattice with an offset.
- $-\ N_i =$ 2 for SC gives the Baldereschi point
- For cubic case, even N_i recommended: avoids high symmetry \vec{k} 's (eg. (000) and BZ boundaries)

- See Moreno and Soler PRB 45, 13841 (92).
- **Note:** even N_i meshes do not satisfy BvK conditions.

Symmetry of MP k-point mesh

- ullet Symmetry of the hexagonal lattice is broken by an even N_i Monkhorst-Pack mesh.
- However, a shift in this mesh restores its symmetry.
- ullet an odd N_i M-P mesh maintains the hexagonal symmetry.

k-point sampling: Metals

Presence of a Fermi surface:

 \Rightarrow Discontinuities in occupation numbers f_{ik} : eg. $\int_{BZ} d\vec{k} \epsilon_{i\vec{k}} f_{i\vec{k}}$

Smear or smoothen the occupation numbers: scale = $\Delta \epsilon = k_B T$

Various schemes of smearing a delta function $(x = \frac{\epsilon - \epsilon_F}{\Delta \epsilon})$:

- Fermi-Dirac smearing: $0.25/cosh^2(x/2)$
- Gaussian smearing: $\exp(-x^2)/\sqrt{\pi}$

 N_k for convergence of $E_{tot}(N_k, \Delta \epsilon)$ increseas with small $\Delta \epsilon$ and band gap.

\vec{k} -points: Practicalities

• Supercell (N_s unit cells) calculations: Brillouin zone is smaller: $N_k \propto 1/N_s$ Number of PW is larger: $N_{pw} \propto N_s$ Mapping for identical representation:

$$\vec{k}_s + \vec{G}_s = \vec{k}$$

ullet Perturbation calculations: perturbation with wave vector \vec{q}_p Ideally, for any \vec{k} ,

$$\vec{k} + \vec{q}_p \in \{\vec{k}\}$$

 \Rightarrow supercell commensurate with \vec{q}_p has equivalent set of \vec{k} -points.

How to choose cutoffs?

- E_{cut} : Ref. Eric's talk. Convergence of energy of a single atom.
- Energy *differences* converge faster than *absolute* energies.
- $E_{kinetic,q>q_c} < 0.001 E_{kinetic}$
- Which properties? Stresses, elastic moduli need higher E_{cut} .
- \bullet N_k : large if band gap is small. small for flat bands (eg. ionic insulators).
- Which properties? dielectric response: higher N_k (eg. Si).

Lab Exercise

Use multi-dataset inputs:

- Silicon, diamond structure (a=5.41 Å): Use $E_{cut} = 8$ Ha, MP k-points (N×N×N), for N from 2 to 8 and plot E_{tot} vs N.
 - with no shift (offset).
 - with a shift (offset), say 0.5 0.5 0.5.
- Aluminium, FCC structure (a=4.04 Å): Use $E_{cut} = 8$ Ha, MP k-points (N×N×N), for N from 4 to 12 and $\Delta \epsilon = k_B T = 0.02$, 0.04, 0.08, 0.12, 0.16 eV.
 - Plot E_{tot} as a function of N_k .
 - Plot E_{tot} as a function of $\Delta \epsilon$.

Summary

- ullet Plane wave cutoff E_{cut} controls the smallest length-scale
- ullet \vec{k} -points control the longest length-scale
- \vec{k} -points applicable to electrons and phonons
- Various \vec{k} -point schemes for BZ sampling
- Number of \vec{k} -points should increase with decreasing band gap and smearing T.
- Use of symmetries allows treatment of only symmetry inequivalent \vec{k} —points and reduces computation.

References

- A. Baldereschi, PRB 7, 5212 (1973).
- D. J. Chadi and M. L. Cohen, PRB 7, 692 (1973).
- H. J. Monkhorst and J. D. Pack, PRB 13, 5897 (1976).
- J. Moreno and J. M. Soler, PRB 45, 13891 (1992).
- Symmetry in Physics I and II, by J. P. Elliott and P. G. Dawber.
- Electronic Structure: Basic Theory and Practical Methods, Richard Martin.