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Recalling the Hartree-Fock equations 

 Recall the Fock operator in the Hartree-Fock equations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Hartree-Fock equations need to be solved self-consistently. 

 

The summation here is over the  

the number of electrons  

(# of occupied orbitals) 
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Total electronic energy 

 Solving the Hartree--Fock equations leads to more than N orbitals. Which of these  

    should we choose to occupy?  

 

 We will choose the N orbitals to be occupied that belong to the lowest eigenvalues  

    ek (ground state).  

 

 This is reasonable based on the so-called Koopmans' theorem to be discussed  

    here. 

 

 Recall from the derivation in our last lecture that the total electronic energy                                

   

                                    is given as: 

 

 

 

 

 

 Alternatively, we can compute EHF using the Hartree-Fock equations as it will be  

    shown next. 
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A useful expression for ek 

 Starting from the Hartree-Fock equations can show that: 

 

 

 

 Recall the Fock operator                                          and the expressions       

     

    for the Coulombian and exchange operators:  

 

 

 

 

 

 With simple substitution in the first equation and using the normalization of the  

    orbitals, you can easily show that 
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Total electronic energy 

 This equation is valid independently if the kth orbital is occupied (k<N) or not (k>N).  

 

 From the above expression with summation, we can compute the following: 
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Total electronic energy 

 Comparison of the following two equations:  

 

 

 

 

 

 

 

 

leads to the following for the electronic energy: 

 

 

 

 

 

 

 The eigenvalues ek appear like individual orbital energies whose sum  

    gives one large contribution to the total electronic energy but which has to be  

    modified by a double-counting term due to electron-electron interactions. 

1
| ( ) |
2

k k k

k k

J Ke        The sums here are over all  

occupied levels 
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Koopmans’ theorems 

 These theorems (to be derived from the Hartree-Fock equations) have to do  

    with the calculations of the ionization energy and electron affinity.   

 

 Ionization energy  -- the energy that you need to spend to remove an  

    electron from an atom.   

 

 Electron affinity -- the energy that you gain when an atom captures an  

    extra electron.   

        

                            How do you calculate these two quantities? 

 
 

 Let us take the case of the Fe atom.  The ionization energy is given by the  

    difference of the Hartree-Fock energy with 26 electrons and the Hartree-Fock  

    energy solution with 25 electrons.  

  

 Similarly the affinity will be the difference between the calculations with 27 and  

    26 electron calculations.   



 

CCOORRNNEELLLL  
U N I V E R S I T Y  

MAE 715 – Atomistic Modeling of Materials 

N. Zabaras (2/13/2012) 
8 

Koopmans’ theorems 

 You can actually do both calculations (of ionization energy and electron    

    affinity) in one calculation if you make the hypothesis that your single  

    particle electrons do not change in the process (frozen orbital    

    approximation). 

 

 If you assume that in going from 26 to 25 electrons, the shape of the orbitals of  

    electron 1, electron 2, etc. do not change, then you can prove that the  

    difference between the system with 26 electrons and the system with 25  

    electrons, is given by the eigenvalue of the 26th electron.   

 

 A single calculation gives you an estimate of ionization energies and  

    electron affinities.  
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Koopmans’ theorems 
 Consider a system of N electrons for which the Hartree-Fock equations were  

    solved. As mentioned before, more than N orbitals will be found. Koopmans  

    compared the total electronic energy for this system with that obtained by either   

    removing one of the electrons from a given orbital or adding one electron to a  

    given orbital. He found that 

 

 

 

 

 

 

 

 

 

 
 

 In the eqs. above, it is assumed that the nth orbital was occupied and the mth 

    empty for the N-electron system, respectively.  

 

 Finally, EHF(M) is the total electronic energy for the M-electron system. 

 

We assume here that 

an electron  

of the nth orbital has 

been removed. 

We assume here that 

an electron has been 

added to the 

mth orbital. 



 

CCOORRNNEELLLL  
U N I V E R S I T Y  

MAE 715 – Atomistic Modeling of Materials 

N. Zabaras (2/13/2012) 
10 

Proof of Koopmans’ theorems 

 To prove Koopmans’ theorems we proceed as follows:  

 

 

 

 

 

 Let us remove an electron from the nth occupied orbital. Using the above, we can 

    write: 

 

 

 

 

 

 

 

 

EHF (N) = 
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Proof of Koopmans’ theorems 
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 Simplifying gives (remember an electron is removed from the nth orbital):  

 

 

 

 

 

 

 

 

(we already proved this earlier) 
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Koopmans’ theorems 

 Koopmans’ theorem allows interpreting the eigenvalues ek of the  

    Hartree-Fock equations as orbital energies that are related to ``electronic  

    transition energies’’. 

 

 It further provides a good argument for occupying the N orbitals of the  

    N lowest eigenvalues ek in solving the Hartree-Fock equations. 
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The Hartree-Fock-Roothaan method 

 Solving the Hartree-Fock equations                               requires  computing the  

     

    real eigenvalues ek and the orbitals k in every point in space as well as its  

    spin-dependence. 

 

 Roothaan suggested  an approximation of the Slater determinant wavefunction: 

 

 

 

 

 

 

 

 

 

 Recall that  the single electron orbitals were computed from the minimization of: 
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The Hartree-Fock-Roothaan method 

 Roothaan expanded the orbitals in a FIXED basis        (plane waves eik.r, Slater 

 functions e-br, Gaussians e-br2, etc.): 

 

 

 

 

 

 Now only the coefficients cpl are unknown. We will insert this approximation in our 

    variational principle and we will do the minimization with respect to cpl : 

 

 

 

 

 

 

 

 

 

 

 

l 
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The Hartree-Fock-Roothaan method 

 We finally obtain: 

 

 

 

 

 

 

 

 

 

 

 

 

 We then enforce: 

 

 

 

 

Cpl is the coefficient of the lth  

orbital to the pth function.  
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The Hartree-Fock-Roothaan method 

 The following final equations are obtained: 

 

 

 

 

 

 

 

 

 and 

 

 

 

 

 
 

 The Lagrange multipliers form a Hermitian matrix (thus the two equations are 

    complex conjugate of each other). We choose the orbitals such that: 
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The Hartree-Fock-Roothaan equations 

Generalized eigenvalue 

problem 

 Many real space basis functions are non- 

    orthogonal leading to an overlap as shown 

    in the sketch for atomic basis functions.  
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The Hartree-Fock-Roothaan equations 

 Instead of determining an infinite number of values (the values of all occupied  

    orbitals in all position-space and spin points), the Roothaan approach simplifies 

    the problem to that of determining only a finite number of parameters. 

 

 Increasing the set of basis functions gives you a better approximation. 

 

 However, the accuracy will never be better than that of the original Hartree-Fock  

    approximation. 

We will next review some typical (but old) results of the  

Hartree-Fock approach 
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Total energy 

 Here the electronic energy is the H-F energy: 

Schematic representation of how the total 

energy depends on the bond length 

for a diatomic molecule   

 Re is in most cases accurately given  

    within the Hartree-Fock approximation. 

 

 There are cases (e.g. transition-metal  

    atoms) where severe errors occur since  

    correlation effects become important.  
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Hartree-Fock Calculations vs. Experimental Data 

  The eigenvalues ei of the Hartree-Fock approximation are called orbital  

    energies. According to Koopmans' theorem the orbital energies are 

    approximations for the ionization energy of an electron from the ith orbital 

     i. The accuracy of Koopmans' approximation rests upon the assumption 

    that the removal of an electron from the ith orbital does not affect the other 

    N - 1 orbitals. Under that approximation,  

 

 

 

    where E and E+ are the Hartree-Fock energies of the neutral atom and the 

    positive ion, respectively. 

 

 

From D. McQuarrie 

http://www.amazon.com/Quantum-Chemistry-Physical-Donald-McQuarrie/dp/093570213X
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Correlation energy and Hartree-Fock 

 In the variational principle if we make the wave function more and more flexible,   

    the accuracy of Hartree-Fock can become better and better.  

 

  As we will see, we can write the wavefunction as the sum of multiple  

    determinants thus improving the accuracy of Hartree-Fock. 

 

 Hartree-Fock in principle can be improved indefinitely.  We will learn that while  

    density functional theory (DFT) performs better and scales at the 3rd power of  

    the size it can’t be improved in any systematic way.   

  

 The Hartree-Fock energy is always going to be higher than the true ground  

    state energy of our system.  What is called the correlation energy is the  

    difference between the true energy of your system and the Hartree-Fock  

    energy.   

 

 When we talk about correlation energy we refer to the energy that is not  

    captured by a Hartree-Fock approach. 
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Ionization energies with Hartree-Fock 

 
Ionization energies (eV) of Ne and Ar obtained from neutral atom 

orbital energies (Koopmans’ theorem) and by subtracting the Hartree-

Fock energy of the neutral atom from the Hartree-Fock energy of the 

approximate state of the positive ion. 

From D. MacQuarrie 

http://www.amazon.com/Quantum-Chemistry-Physical-Donald-McQuarrie/dp/093570213X
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Ionization potentials and electron affinities 

 According to Koopman’s theorem, the orbital energies ek can be related to the  

    ionization potentials and electron affinities.  

 

 The results obtained are not in good agreement with experiments because the  

    Koopmans’ theorem neglects effects related to the fact that the orbitals will  

    change when the number of electrons is changed (relaxation effects).   
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Hartree-Fock and the periodic table 

The distribution of electronic charge in 

an argon atom as a function of the  

distance from the nucleus 

(from D. McQuarrie) 

 

 Using Hartree-Fock, one could start  

    solving atoms and recover the shell  

    structure of atoms. 

 

 If you would obtain the Hartree- 

    Fock solution for e.g. an Argon  

    atom and then plot the overall  

    charge density of the system then it  

    would start to look like the figure  

    here. 

 

 

 

 As we move from the center  

    outwards it would clearly show the  

    fundamentals of the periodic table  

    nature of things.  That is it would  

    show 1s shell and then it would  

    show a 2s and a 2p shell, etc.  

http://www.amazon.com/Quantum-Chemistry-Physical-Donald-McQuarrie/dp/093570213X
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Hartree-Fock and the periodic table 

 

 The periodic table itself is not the truth picture of electrons -- it’s just a  

    Hartree-Fock picture of electrons.   

 

 In principle, you shouldn’t be able to talk about single particle orbitals 1s, 2s  

    because if you have e.g. an Fe atom, you have many body wave function that is  

    an overall function of all the electrons.  It is only when you enter into an Hartree-   

    Fock picture that you can have a well defined concept of a single orbital for an  

    electron and of the energy for that electron.   

The periodic table is nothing else 

than the Hartree-Fock solution for 

the atoms  
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Dissociation energy and harmonic frequencies 

 Often the calculation of De is less accurate than that of Re. 

 

 

 

 Harmonic frequencies can be easily approximated: 

       where the reduced mass of the two nuclei is defined: 
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Dissociation energy and harmonic frequencies 

Lengths in Angstroms and angles in degrees for small molecules 

(from Daudel et al., 1983). 

http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
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Vibrational frequencies 

Vibrational frequencies for small molecules 

in cm-1 (from Daudel et al., 1983). 

The frequencies  

with H-F 

are overestimated 

http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
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Electron densities 

 The electron densities computed are  

    structure-less. They resemble the  

    densities of superposed atoms.  

 

 The chemical bonds are hardly visible.  

From R. F.W. Bader 

http://www.chemistry.mcmaster.ca/esam/
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Electron difference density 

 We usually compare the total density with that of the superposed atomic 

 densities (i.e. the sum of the densities of the isolated atoms placed at the 

 positions where the nuclei are for the system of interest).  

Bader (1970) 

http://www.chemistry.mcmaster.ca/esam/
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Spin density 

 The spin density is the difference of the electron density for the electrons with an  

    a spin minus that of the electrons with a b spin: 

 

NO molecule (Daudel et al. 1983) 

http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
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Total dipole moment, the electrostatic potential 

 The total dipole moment of a molecule is the sum of the dipole moment of the  

    nuclei plus that of the electrons. 

 

 

 
 

 

 The total electrostatic potential is given as: 

 

Electrostatic potentials for H20  

(Daudel et al., 1983) 

 The potential gives some ideas about 

    where a charged particle would  

    attack in a chemical reaction.  

 

 A positive ion will feel attracted to the  

    regions of negative potential, and vice  

    versa. 

http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
http://www.amazon.com/Quantum-Chemistry-Raymond-Daudel/dp/0471901350
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Restricted and Unrestricted Hartree-Fock 

 To describe an electron, we do not only describe what the distribution of its wave  

    function is in space but we also specify what is the spin of the electron.  

 

 For an even number of electrons and total spin S=0 (closed shell), the spatial 

 orbitals are the same for spins up and down:  

 

 

 

 If the number of electrons with spin up and spin down is  

 different (odd number of  electrons), then we have an  

 open shell system.  

 

 In open shell systems, electrons with different spins move 

  in different fields created by the other electrons. 

 

 In restricted Hartree-Fock, an electron of spin-up and  

 an electron of spin-down will have the same spatial part of the wave function. 

 Their wave functions still differ since they describe an electron with spin-up and 

 an electron with spin-down.   

 

   2 1 2( , ), ( , ) ( ) ( ), ( ) ( )k k k kr r r r     a   b   closed shell open shell 
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Restricted and Unrestricted Hartree-Fock 

 You should actually make your wave function more flexible:   an electron with a 

 spin-up and an electron with a spin-down even if they are very close in energy 

 can have 2 wave functions in which the space part differs.  This is an 

 unrestricted Hartree-Fock solution which will always give you a lower 

 energy than a restricted solution.   

 
Dissociation of a H-molecule.  Shown  

is the energy of 2 H-atoms as a 

function of the nuclear distance.  

Both RHF and UHF formulations do very well close 

to the equilibrium point 
From MIT  3.320 

In the RHF, the 2 electrons have the same 

orbital part in the wave function, they just 

differ in having a spin-up and a spin-down 

term.  In the UHF, the 2 electrons don’t 

need to have the same orbital part for the 

wave function.   

http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/3-320Spring-2005/CourseHome/index.htm


 

CCOORRNNEELLLL  
U N I V E R S I T Y  

MAE 715 – Atomistic Modeling of Materials 

N. Zabaras (2/13/2012) 
35 

Restricted and Unrestricted Hartree-Fock 

 The restricted Hartree-Fock (RHF) is not doing well is predicting the dissociation   

    energy.   

 

 The two 1s orbitals are covalently    

    overlapping and so RHF does very  

    well near equilibrium. It is basically  

    identical to UHF but formally UHF  

    will always be lower than RHF.  

 

 UHF contains the restricted solution  

    because in order to have a restricted  

    solution you just need to have the  

    orbital part for the 2 electrons to be  

    identical.  Recall from the variational  

    principle that the more flexibility   

    you introduce in your trial wave   

    function the lower the ground energy  

    will be. From MIT  3.320 

http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/3-320Spring-2005/CourseHome/index.htm
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Restricted and Unrestricted Hartree-Fock 

 Consider the breaking of the H- 

    molecule. 

 

 The RHF is doing very poorly in  

    predicting the dissociation energy.       

    The UHF does very well.  

 

 To correct this, you will need a   

    wave-function that has an  

    additional determinant to account  

    for anti-bonding states  

From MIT  3.320 

http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/3-320Spring-2005/CourseHome/index.htm


 

CCOORRNNEELLLL  
U N I V E R S I T Y  

MAE 715 – Atomistic Modeling of Materials 

N. Zabaras (2/13/2012) 
37 

The total spin of the N-electron system 

 The total spin of the N-electron system is a quantity that can be used in 

    evaluating the quality of a given approximate wavefunction.  

 

 It can also be used in restricting the approximate N-electron wavefunction. 

 

 Let us consider the square of the total spin operator: 

 

 

 

 

 

    where  

 

 

 You may already have seen in your Quantum Mechanics class the ladder  

    operators (which do not commute):  

Each term is a  

sum of single-electron 

contributions  
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The total spin of the N-electron system 

 Consider a spin eigenstate qSM for which: 

 You can then show that: 

 Thus the operators:                                       and 

 

    change the z component by +1 or -1, respectively but keep the same total spin. 

 

 With these operators, we have: 
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Explicit spin dependence of the wavefunction 

 We now include the spin dependence in the Slater determinant:   

 Assume that we have n orbitals with a spin and m orbitals (n+m=N) with b spin:   

 The functions        and           depend only on position-space coordinates (i.e., 

 

    no spin dependence), and we allow for the orbitals of different spins to be   

    different (hence, the superscripts + and -). 

 

m 
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Spin dependence of the wavefunction 

 The exact N-electron wave function is an eigenfunction to            and   

 

 Is this also the case with the approximate (Slater determinant) wavefunction? 

 Each term contains both all functions and all electron coordinates as  

    arguments exactly once. 

 When       acts on a single term in the sum in the Eq.  above, it     

    returns this  sum multiplied by 1/2 for each a spin and by -1/2 for  

    each b spin. This gives a total factor of (n - m)/2 for any term: 
 

 (recall we have n electrons with spin up and m electrons with spin down and the    

  operators are sum of the corresponding operators for all electrons).  
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Spin dependence of the wavefunction 

 Thus the Slater determinant is an eigenfunction of          regardless of the form  

    of the orbitals 

 Unfortunately F is not necessarily an eigenfunction for the        operator.  
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Spin dependence of the wavefunction 

 Consider the case n=m=1 (two electrons): 

 Since F is an eigenfunction of        (with an eigenvalue zero, n-m=0), it is also an     

    eigenvalue of       .   

 

 But for          ,  

    we find: 

Here, we have  

used 
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Spin dependence of the wavefunction 

 We next apply          to the earlier expression to obtain: 

Here, we have  

used 
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The projected Hartree-Fock method 

 However, we already know that: 

 With                          , we conclude that                           . Now recall that:  

 Thus F can be an eigenfunction of              only if:                           . In this case, 

 In the general case with n=m (=N/2), one can show that F is an eigenfunction of  

            

               if  the condition above is applied for all orbitals. 

 In this case, the Hartree-Fock-Roothan equations can be simplified by using the  

    fact that the a and b functions are orthonormal and by performing all `spin  

    integrations’ and summations.  

 F (we should actually remove the +  

and – scripts here)  
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Simplified Hartree-Fock-Roothaan equations 

 Recall our original Hartree-Fock-Roothaan equation becomes: 

 They now take the form: 

 The Nb functions here depend only on position. 

 

 The summations over the N orbitals 

    have been replaced by ones over the  

    N/2 different position-space functions. 

 



 

CCOORRNNEELLLL  
U N I V E R S I T Y  

MAE 715 – Atomistic Modeling of Materials 

N. Zabaras (2/13/2012) 
46 

Projected Hartree-Fock  

 Recall that any Hermitian, linear operator           defines a complete 

    set of orthonormal functions fi through 

 Completeness here implies that any other function g can be expanded like 

 We then have: 

 Apply this to the operator            with g the Slater determinant.    

    The equation above states that the Slater determinant is NOT an eigen- 

    vector of  
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Projected Hartree-Fock 

 Let us define the following projection operator: 

 

    and assume that:                           and g= 

 Thus                   returns a constant times an eigenvector of         -- in essence 

  

                       (for any g) is also an eigenfunction of            (more precise the  

 

    same eigenfunction that was used to define the projection operator)! 

 We can now apply this technique to the wavefunction F: 
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Projected Hartree-Fock: An example 

 We consider the following example: 

 You can show that the spin function 

      

    is an eigenfunction of  
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Projected Hartree-Fock: An example 

 We multiply F  with q* and integrate (i.e. sum over the a and b spin functions for     

    both electrons) to finally obtain: 

  

 We now multiply by q to obtain the following: 

 We need to form  F, where        =|q><q|  
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Projected Hartree-Fock 

 Simplifying the earlier equation leads to: 

 This is not any more a single Slater determinant but the sum of two  

 determinants! 

 

 It is however an eigenfuction of  

 

 In general normalization of this eigenfunction is needed. 
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Projected and extended Hartree-Fock 

 There are now two different ways of applying this technique.  

 

 One can perform an unrestricted (standard) Hartree-Fock calculation   

    (i.e., ignore the problem related to           and after having obtained the self- 

    consistent solutions to the Hartree-Fock-Roothaan equations, perform the  

    projection. This is the so-called projected Hartree-Fock method.  

 

 Alternatively, at each step of the calculation one perform the projection    

    during the iterative process of solving the Hartree-Fock-Roothaan  

    equations. This leads to the so-called extended Hartree-Fock method.  

 

 Neither approach is optimal, and one should apply methods that include 

correlation effects. 
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What is missing in Hartree-Fock? 
 What is missing in Hartree-Fock is correlation.    

 

 Dynamic correlation 

 

Recall in the case of He, the 2 interacting electrons like to keep each other 

instantaneously as far away apart as possible.  However, we tend to put 

electrons too close to each other because we have one electron interacting 

with the average field of the other (mean field solution). There are a lot of 

configurations in which the 2 electrons are too close to each other, 

that raises the energy of the system (e.g. HF overestimates the 

energy). 

   

 Static correlation   

 

Those have to do more with the fact that a single determinant solution 

doesn’t have the flexibility that you need and this was the case e.g. of 

the breaking of the H-molecule.  You really want in breaking apart the 

molecule to have a 2 determinants kind of flexibility with both bonding and 

anti-bonding combinations.   
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Multiple determinants – using excited orbitals 

 We will need to consider a wave function that is a combination of determinants  

    with different coefficients in which the determinants have been constructed   

    with a number of orbitals that include also excited orbitals. 

 

 This would increase the variational flexibility of your problem (configurational  

    interaction).  We will come back to this in a forthcoming lecture. 

The more flexible you become in your 

wave function, the closer you get to the 

right solution but at an enormous price  

(scaling of N7). 


