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The mass-loaded and nonlinear vibrating string
problem revisited
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Abstract. This paper addresses the physics of a vibrating string excited by a hard narrow hammer
and the influence of nonlinearities in the time evolution of plucked strings, which have been
incorrectly analysed in two recent papers by Bolwell.

In two recently published papers in this journal
[1, 2], Bolwell revisits a number of well
known and extensively studied problems in
the physics of string vibrations. Accepted
theoretical models are criticized without
justification and ‘new solutions’ ([1] abstract)
are presented that lead to ‘results that are
quite frankly astonishing’ ([2] page 318).
Unfortunately, both papers are based on
incorrect physics so that the results presented
are invalid.

In the first paper, ‘On Rayleigh’s
equations for the vibrations of a loaded
flexible string’, Bolwell first introduces
Rayleigh’s solutions. These correctly
describe the normal modes of string vibration
of a string at constant tensionT and massm0
loaded by a point massm at a positiona along
its lengthL . The normal modesYn(x, t)
describing the transverse string vibrations
are sine waves with nodes at the rigid end-
supports of the form sinknx and sinkn(L−x)
to the left and right of the mass, withkn =
ωn/c, wherec = √T L/m0 is the velocity
of transverse waves on the string and we
have used the more normal convention for the
wavevectork and angular frequencyω. The
eigenfrequenciesωn are determined from the
transcendental equation

m

m0
sinkna sinkn(L− a) = sinknL

knL
.

The important point to note is that the
frequencies, and therefore the wavelengths,
are perturbed from those of the unloaded

string, apart from those modes with a node at
the point of mass attachment. For all other
modes, the separate sine-wave solutions to
the right and the left of the string result in a
discontinuity in slope1(∂y/∂x) at the point
of mass attachment, as required to satisfy the
equation of motion,

m
∂2y

∂t2
= T1

(
∂y

∂x

)
.

It follows therefore that, since any possible
motion of the string can be described in terms
of the normal modes of the system, we can
write

y(x, t) =
∑
n

Yn(x)(An sinωnt +Bn cosωnt)

(1)

where the coefficientsAn and Bn are
determined by the initial displacements and
velocities along the length of the string at
t = 0. All this is standard textbook material
[3, 4].

However, Bolwell then proposes without
justification that ‘it is especially beneficial to
reduce the (above) Rayleigh equation to a
single standing-wave solution’ of the form

y(x, t) =
∑
n

sin
(nπx
L

)
(An sinωnt

+Bn cosωnt) (2)

as in equation (8) of [1], where Bolwell
has assumed Rayleigh’s properly evaluated
eigenfrequenciesωn for the normal modes, but
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has replaced the proper spatial eigensolutions
Yn(x) by the sine-wave eigenfunctionsfor
the unloaded string. Because the sine waves
fail to satisfy the boundary condition at
a, which requires a discontinuity in slope
to accelerate the attached mass, Bolwell’s
postulated ‘alternative approach’ is therefore
unphysical, quite apart from lacking any
mathematical validity. Consequently, all that
follows in the paper based on this incorrect
model is wrong.

Bolwell then goes on to address the
interesting problem of a string excited at a
point along its length by a hard hammer,
a problem related to the sound produced
by a piano or zither. Unfortunately, the
problem incorrectly assumes ‘a naive equation
of motion’, which the reader is expected to
derive from equation (27) of [1]. It is indeed
easy to derive the proposed model, which
assumes that the mass is connected to the
rigid end-supports by straight-line sections of
string. However, it is also easy to show that
such a solution is unphysical. Since the net
force produced by the tension on any straight
section of string is zero, any straight section
of a string must therefore be either at rest or
moving with uniform velocity. This implies
that the mass attached to the string must itself
be moving with a constant velocity, which
reverses in direction every half cycle, which
is again unphysical.

The essential point to recognize is that
any disturbance created by the impacting mass
travels out towards the end-supports with a
finite velocityc. There will therefore always
be a time lag in any resulting disturbance
travelling along the string; this is the basis
of the unwisely criticized approaches taken
by ‘impulse modellers’. Only in the limit of
a very heavy mass impacting and remaining
stuck on the string at very long times, when
all modes other than the lowest eigenmode
will have decayed by the damping inevitably
present, would the solution proposed by
Bolwell even approximate to reality.

A proper theoretical description of this
problem has been given by Hall [5, 6] for
both hard and soft impacting masses. On
initial impact, the impacting mass initiates an
outgoing wave, which travels outwards in both
directions with velocityc towards the end-
supports. This wave is then reflected at the
ends of the string and provides a renewed

impulse to the mass, producing secondary
discontinuities in velocity of the attached
mass and the generation of a new pair of
secondary radiated waves. On reflection from
the ends, these secondary waves result in
further reflections, further discontinuities in
velocity of the attached mass and a new set
of secondary waves, which in turn generate
further generations of waves. Depending on
the magnitude of the impacting mass and its
position along the string, a rich variety of
solutions is possible. Only for a very light
mass impacting close to an end-support will
the first reflected wave cause the mass to
bounce off the string, provided it has not
become permanently attached [5]. In general,
many reflections are necessary before the mass
bounces back off the string. Indeed, having
first bounced off, the string can often make
renewed contact with a heavy mass three or
four times before contact is permanently lost,
as shown by Hall [6].

In the early 1900s, many attempts were
made to tackle this problem, but most
publications, like Bolwell’s, were based
on incorrect physical models. In [6]
Hall provides a penetrating analysis of the
historical work and introduces an elegant and
relatively simple way of solving the problem,
based on the above model of reflections and
propagation of secondary waves. Such a
model can be used to describe the complicated
dynamics over a wide range of experimental
parameters.

As Bolwell correctly suggests, the
problem of a mass impacting and bouncing
off a string, or the equivalent problem of a
trapeze artist bouncing on a ‘high wire’, is
ideally suited to student project work, either
experimental or computational. But such
projects should be based on sound physical
models, such as those described by Hall,
rather than on the incorrect theoretical model
presented in [1].

In the second paper [2], Bolwell asks
‘How realistic is the D’Alembert plucked
string?’. He addresses the influence of finite-
amplitude string vibrations and the resulting
second-order corrections to the standard
linear wave equation. This problem is
properly described in advanced textbooks on
vibrations, such as Morse and Ingard [3]. A
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finite-amplitude string vibrationy(x, t) leads
to an increase in the total length of the string

δL = 1

2

∫ L

0

(
∂y

∂x

)2

dx

which results in the well known expression
for the potential energy of the stringT δL,
essentially the work done in stretching
the string assuming no change in tension.
However, the increase in stretched length
associated with a finite-amplitude standing
wave, y(x, t) = a sin(nπx/L) sinωnt , will
result in a time-varying tension. To second
order in the amplitude of string vibration this
tension can be written in the useful form

T

[
1 +

n2π2

8

a2

L1L
(1− cos 2ωnt)

]
(3)

where 1L is the amount by which the
string was initially stretched to achieve the
tensionT . In deriving this expression, we
have assumed that local increases in string
length result in an immediate increase in
string tension, which remains uniform along
its length. This is equivalent to assuming
that the velocity of longitudinal waves on
the string is very much larger than that of
transverse waves and that we can ignore the
dynamics of the longitudinal modes, which
is valid for most examples of experimental
interest. Morse and Ingard [3] present a more
general mathematical model, which allows
for a finite coupling between the transverse
and longitudinal modes. However, for cases
of practical interest, the above simplifying
assumption is sufficient.

The above expression shows that finite-
amplitude string vibrations result in a net
increase in average tension and a time-varying
term at double the frequency of the mode
excited. For example, a string plucked at its
centre involves only the odd eigenmodes with
frequencies,f1, 3f1, 5f1, . . . etc. However,
the nonlinear frequency-doubling term will
transfer energy to the supporting structure
at a frequency 2f1, leading to a component
at this frequency in the sound excited, as
demonstrated by Legge and Fletcher in [7]
figure 3.

The most important effect of the
nonlinearity, however, is to increase the mean
tension, which in turn leads to a fractional
increase in the transverse wave velocityc,
and hence frequency, of any excited mode

by an amount1fn/fn = 1
21T/T . Contrary

to what is stated by Bolwell, this is a rather
small effect for most stringed instruments,
otherwise the pitch of a note would change
appreciably when it is played loudly. For
example, consider a string of length 30 cm,
typically stretched by about 3 cm to provide
its normal playing tension. Assume that
it is bowed or plucked strongly to give a
very large vibration amplitude of 1 cm at the
centre of the string. The fractional increase
in the fundamental frequency expected from
equation (3) is∼ a2/(21LL) = 1/600,
which would represent an imperceptible
increase in pitch. To investigate the very
interesting nonlinear physics of vibrating
strings [8], it is advantageous to use a very
slack string, so that not only is1L small but
very-large-amplitude vibrations can also be
excited.

Although the above expression for the
nonlinear increase in tension disagrees by a
numerical factor from that given by Bolwell,
he correctly predicts an increase in tension
with mode number varying asn2. However,
an incorrect assumption is then made that
each mode acts independently, so that ‘the
valuec1 (i.e. the transverse wave velocity) is
different for each standing wave’, where the
term in parentheses is my own. This is quite
unphysical. Any increase in tension clearly
affects all excited modes alike. It is therefore
not surprising that results derived based on
this model are ‘quite frankly astonishing’.
Unfortunately, the results are simply wrong.

A more appropriate approach would be
to evaluate the increase in tension from all the
modes present. Because the normal modes
are orthogonal, the increase in string length is
simply given by

1

2

∑
a2
n

n2π2

L

summed over all excited modes. This leads to
the frequency of all the modes being increased
by the same fractional amount, proportional
to the mean square amplitude of transverse
string displacement. For a string released
from rest by plucking at its centre, the example
used by Bolwell, the amplitudes of the various
modes initially present are such thatan ∼
1/n2, with only the odd modes of string
vibration excited. The nonlinear effects will
therefore be dominated by the fundamental
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mode, contributing a term nine times larger
than the third harmonic and 25 times larger
than the fifth.

Throughout the two papers, Bolwell
claims major deficiencies in standard textbook
treatments of waves on strings and is
particularly critical of mathematical, and
supposedly unphysical, approaches used by
‘impulse modellers’, which are based on the
D’Alembert solutions of the wave equation.
Nothing in either paper supports such a view.
Readers interested in learning more about the
interesting physics of string vibrations and
about the real factors that complicate their
vibrations on musical instruments are strongly
recommended to read the standard textbooks
cited by Bolwell. Morse and Ingard [3]
provide an authoritative theoretical account
of both linear and nonlinear string vibrations,
while Fletcher and Rossing [4] describe
relevant theory in relation to applications
in musical acoustics. The latter can
be strongly recommended as an invaluable
source of ideas for interesting computational

and experimental student projects involving
string vibrations and much else in musical
acoustics.
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