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The mass-loaded and nonlinear vibrating string
problem revisited
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Abstract. This paper addresses the physics of a vibrating string excited by a hard narrow hammer
and the influence of nonlinearities in the time evolution of plucked strings, which have been
incorrectly analysed in two recent papers by Bolwell.

Intwo recently published papersin this journadtring, apart from those modes with a node at
[1,2], Bolwell revisits a number of well the point of mass attachment. For all other
known and extensively studied problems imodes, the separate sine-wave solutions to
the physics of string vibrations. Acceptedhe right and the left of the string result in a
theoretical models are criticized withoutliscontinuity in slopeA(dy/dx) at the point
justification and hew solutions([1] abstract) of mass attachment, as required to satisfy the
are presented that lead teesults that are equation of motion,

quite frankly astonishirig([2] page 318).

2
Unfortunately, both papers are based on %y — (8_y) )
incorrect physics so that the results presented 972 0x
are invalid. It follows therefore that, since any possible

In the first paper, ‘On Rayleigh's nqtion of the string can be described in terms

equations for the vibrations of a loadeg the normal modes of the system, we can
flexible string’, Bolwell first introduces e

Rayleigh’'s solutions. These correctly )

describe the normal modes of string vibratiom(x, 1) = Z Y, (x)(Ay SINw,t + B, COSw, 1)
of a string at constant tensidhand mas:q n

loaded by a point mass at a positior: along Q)

its length . The normal moded’,(x,”) \yhere the coefficientsd, and B, are
describing the transverse string wbratmr:g

. ith nod t the riaid etermined by the initial displacements and
are sn:te V\ﬁ\ées} Vl\'lrl’n ino esn(? irke zgl eNGelocities along the length of the string at
supports of the form sik, x and sink, (L. —x) t = 0. All this is standard textbook material
to the left and right of the mass, with, = [3, 4]

wy,/c, wherec = /TL/myg is the velocity | .
of transverse waves on the string and w However, Bolwell then proposes without

g tification that ‘it is especially beneficial to
have used the more normal convention for tﬂgs : !
wavevectork and angular frequenay. The réduce the (above) Rayleigh equation 1o a

eigenfrequencies, are determined from theSlngle standing-wave solution’ of the form

transcendental equation Y1) = Zsin (nnx) (A, sinw, 1
™ sink,a sink (L—a)= Sink, L ’ t
mg S T A= +B,, COSw,1) )

The important point to note is that theas in equation (8) of [1], where Bolwell
frequencies, and therefore the wavelengthsas assumed Rayleigh's properly evaluated
are perturbed from those of the unloadeeigenfrequencies, forthe normalmodes, but
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has replaced the proper spatial eigensolutioimspulse to the mass, producing secondary
Y,(x) by the sine-wave eigenfunctiorfer discontinuities in velocity of the attached

the unloaded string Because the sine wavesnass and the generation of a new pair of
fail to satisfy the boundary condition atsecondary radiated waves. On reflection from
a, which requires a discontinuity in slopghe ends, these secondary waves result in
to accelerate the attached mass, Bolwelkgrther reflections, further discontinuities in

postulated ‘alternative approach’ is thereforge|ocity of the attached mass and a new set
unphysical, quite apart from lacking anyf secondary waves, which in turn generate
mathematical validity. Consequently, all thag,tner generations of waves. Depending on

follows in the paper based on this incorregj,, magnitude of the impacting mass and its

model is wrong. o . ; .
osition along the string, a rich variety of
Bolwell then goes on to address thg,ijong js possible. Only for a very light

interesting problem of a string excited at fhass impacting close to an end-support will

gog]rtoalg;g rglsatlsgg:cr)] tbhye as c?l?r:g B?&Tf{%g: first reflected wave cause the mass to

by a piano or zither. Unfortunately, th ounce off the string, provided it has not

problem incorrectly assumes ‘a naive equatidtf ©°©Me permanently attached[5]. In general,
of motion’, which the reader is expected t&"any reflections are necessary beforethe mass
derive from equation (27) of [1]. It is indeed2ounces back off the string. Indeed, having
easy to derive the proposed model, whiclifst bounced off, the string can often make
assumes that the mass is connected to tigfewed contact with a heavy mass three or
rigid end-supports by straight-line sections dpur times before contact is permanently lost,
string. However, it is also easy to show thas shown by Hall [6].
such a solution is unphysical. Since the net In the early 1900s, many attempts were
force produced by the tension on any straightade to tackle this problem, but most
section of string is zero, any straight sectiopublications, like Bolwell’s, were based
of a string must therefore be either at rest @n incorrect physical models. In [6]
moving with uniform velocity. This implies Hall provides a penetrating analysis of the
that the mass attached to the string must itsélistorical work and introduces an elegant and
be moving with a constant velocity, whichrelatively simple way of solving the problem,
reverses in direction every half cycle, whictbased on the above model of reflections and
is again unphysical. ~ propagation of secondary waves. Such a
The essential point to recognize is thahodel can be used to describe the complicated

any disturbance created by the impacting maggnamics over a wide range of experimental
travels out towards the end-supports with garameters.

finite velocity c. There will therefore always As Bolwell correctly suggests, the

be a time lag in any resulting disturbancgohiem of a mass impacting and bouncing

travelling along the string; this is the basiyg 5 ring, or the equivalent problem of a
of the unwisely criticized approaches takeﬁ‘apeze artist bouncing on a ‘high wire’, is

by “impulse modellefs Only in the limit of 40" ited to student project work, either
a very heavy mass impacting and remainin

stuck on the string at very long times, Whehg(penmental or computational. ~ But such

all modes other than the lowest eigenmoo‘tl-,rojeCtS should be based on sound physical

will have decayed by the damping inevitabl%Odels’ such as those described by Hall,

present, would the solution proposed b therthan_on the incorrect theoretical model
Bolwell even approximate to reality. resented in [1].

A proper theoretical description of this [N the second paper [2], Bolwell asks
problem has been given by Hall [5, 6] for‘qu realistic is the D’Algmbert pluckeq
both hard and soft impacting masses. OHring?’. He addresses the influence of finite-
initial impact, the impacting mass initiates a@mplitude string vibrations and the resulting
outgoing wave, which travels outwards in botgecond-order corrections to the standard
directions with velocityc towards the end- linear wave equation.  This problem is
supports. This wave is then reflected at theroperly described in advanced textbooks on
ends of the string and provides a renewedbrations, such as Morse and Ingard [3]. A
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finite-amplitude string vibration (x, ¢) leads by an amountAf, /f, = %AT/T. Contrary
to an increase in the total length of the stringo what is stated by Bolwell, this is a rather
1 (L /9y\2 small effect for most stringed instruments,
SL = _/ <_y) dx otherwise the pitch of a note would change
2Jo \0x appreciably when it is played loudly. For

which results in the well known expressiofgxample, consider a string of length 30 cm,
for the potential energy of the stringjs, typically stretched by about 3 cm to provide
essentially the work done in stretchindtS hormal playing tension. Assume that
the string assuming no change in tensiofi. is bowed or plucked strongly to give a
However, the increase in stretched lengiery large vibration amplitude of 1 cm at the
associated with a finite-amplitude standingentre of the string. The fractional increase
wave, y(x,t) = asin(nmx/L)sinw,t, will 1N the.fundam.ental frequency expected from
result in a time-varying tension. To secongguation (3) is~ a?/(2ALL) = 1/600,
order in the amplitude of string vibration thigvhich would represent an imperceptible
tension can be written in the useful form  increase in pitch. To investigate the very
272 42 interesting nonlinear physics of vibrating
T [1 + (1 — cos 2,),1;)} (3) strings [8], it is advantageous to use a very
8 LAL slack string, so that not only i& L small but
where AL is the amount by which thevery-large-amplitude vibrations can also be
string was initially stretched to achieve thé&Xxcited.
tensionT. In deriving this expression, we  Although the above expression for the
have assumed that local increases in strim@nlinear increase in tension disagrees by a
length result in an immediate increase inumerical factor from that given by Bolwell,
string tension, which remains uniform alondpe correctly predicts an increase in tension
its length. This is equivalent to assumingvith mode number varying as>. However,
that the velocity of longitudinal waves onan incorrect assumption is then made that
the string is very much larger than that ogach mode acts independently, so that ‘the
transverse waves and that we can ignore thigluec; (i.e. the transverse wave velocity) is
dynamics of the longitudinal modes, whicHdifferent for each standing wave’, where the
is valid for most examples of experimentalerm in parentheses is my own. This is quite
interest. Morse and Ingard [3] present a momgnphysical. Any increase in tension clearly
general mathematical model, which allowsaffects all excited modes alike. It is therefore
for a finite coupling between the transversgot surprising that results derived based on
and longitudinal modes. However, for casethis model are ‘quite frankly astonishing'.
of practical interest, the above simplifyingJnfortunately, the results are simply wrong.
assumption is sufficient. A more appropriate approach would be
The above expression shows that finitde evaluate the increase in tension from all the
amplitude string vibrations result in a netmodes present. Because the normal modes
increase in average tension and a time-varyimage orthogonal, the increase in string length is
term at double the frequency of the modsimply given by
excited. For example, a string plucked at its 1 2.2
centre involves only the odd eigenmodes with = Zaf” T
frequencies,f1, 3f1,5/1, ...etc. However, L
the nonlinear frequency-doubling term wilsummed over all excited modes. This leads to
transfer energy to the supporting structurise frequency of all the modes being increased
at a frequency 2, leading to a componentby the same fractional amount, proportional
at this frequency in the sound excited, a® the mean square amplitude of transverse
demonstrated by Legge and Fletcher in [&tring displacement. For a string released
figure 3. fromrest by plucking at its centre, the example
The most important effect of theused by Bolwell, the amplitudes of the various
nonlinearity, however, is to increase the meanodes initially present are such that ~
tension, which in turn leads to a fractional/n?, with only the odd modes of string
increase in the transverse wave velocity vibration excited. The nonlinear effects will
and hence frequency, of any excited modaerefore be dominated by the fundamental




L14 Letters and Comments

mode, contributing a term nine times largesind experimental student projects involving
than the third harmonic and 25 times largestring vibrations and much else in musical
than the fifth. acoustics.

Throughout the two papers, Bolwell
claims major deficiencies in standard textboo&
treatments of waves on strings and is
particularly critical _Of mathematical, and 1] Bolwell J 1999 On Rayleigh’s equations for the
s_upposedly unphy5|cal,_ approaches used by vibrations of a loaded flexible strirur. J. Phys
‘impulse modellers’, which are based on the 20305-12

[ - plucked stringZEur. J. Phys20313-20
NOthmg ".1 either pa_per sup_ports sucha Vle\#g Morse P M and Ingard K U 196&heoretical
Reader; mterest_ed in Iear_nlng more about t Acoustic{New York: McGraw-Hill)
interesting physics of string vibrations angy] Fletche N H and Rossig T D 1998The Physics of
about the real factors that complicate their] 'Vlllusicglslnstrumentﬁnd edn (Berlin: ﬁpringer)f

; ; ; i Hall D 1985 Piano string excitation in the case o
vibrations %n rgnusmal :jnsrgrumen:js a(rje Stf%ﬂg‘? small hammer mass Acoust. Soc. An79 141-7
recommen ed to read the standard text oo[%fHall D 1987 Piano string excitation II: general
C|teo! by Bolwell. ~ Morse and _Ingard [3] solution for a hard narrow hammérAcoust. Soc.
provide an authoritative theoretical account Am81535-46 o
of both linear and nonlinear string vibrations, Hall D 1987 Piano string excitation Ill: general

- . - solution for a soft narrow hammdr Acoust. Soc.
while Fletcher and Rossing [4] describe o157 55

relevant theory in relation to application$z] |egge k A and FletcheN H 1984 The bowed string
in musical acoustics. The latter can  J. Acoust. Soc. An765-12
be strongly recommended as an invaluabl® Gough C E 1984 The nonlinear free vibration of a

source of ideas for interesting computational ~damped elastic string Acoust. Soc. AT
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